mass - grams
volume - liters
Both are considered base units

Different prefixes can be used to change the order of magnitude
Kilo means 1000
$1 \mathrm{~kg}=1,000$ grams
Milli means 1/1000
$1 \mathrm{~g}=1,000$ milligrams
*We will learn the rest of the prefixes in class
*We will also practice converting from one unit to another

Measurements - ideally want to use the most precise instrument that is available
Triple Beam Balance - measures mass
3 beams, each with a different sized weight
Make sure that when nothing is on the scale, the line on the beam must match up with the line next to the zero.

To weigh something, place it on the metal plate, then move the weights until the line on the beam matches up with the zero again.
@5:41 - misspoke - meant to say electronic balance

Electronic balance - will only give you whole number measurements.

For measuring volume
Different sized graduated cylinders ($100 \mathrm{ml}, 50 \mathrm{ml}$, and 10 ml)
Use the 10 ml cylinder for measuring out anything less than 10 ml
Use the 50 ml cylinder for measuring out anything between 10 and 50 ml
Use the 100 ml cylinder for measuring out anything between 50 ml and 100 ml

Significant Figures

- Show us how precise a measurement is
- Measurements include all known values plus one estimated value
$12.5 \mathrm{ml} \rightarrow 3$ sig figs
12 ml is known
.5 ml is estimated

Rules for Significant Figures

1. All non-zero numbers are significant.
$273 \mathrm{~g} \rightarrow 3$ sig figs
$2.5 \mathrm{ml} \rightarrow$
2. All zeroes between non-zero numbers are significant.
$102 \mathrm{~g} \rightarrow 3$ sig figs
$110.5 \mathrm{ml} \rightarrow$
3. Leading zeroes are NOT significant
$.032 \mathrm{~g} \rightarrow 2$ sig figs
$.00304 \mathrm{ml} \rightarrow$
4. Trailing zeroes are significant ONLY if after a decimal.
```
. 20g -> 2 sig figs
.0740 g ->
0.0100 ml H
230g T
230.0 g 
```

When adding/subtracting:
final answer must have the same number of decimal places as the initial value with the fewest decimal places.
$372.5+12.25=384.75$
Must round the answer to 384.8 to have the same number of decimal places as 372.5 (fewest number of decimal palces)

When multiplying/dividing:
final answer must have the same number of sig figs as the initial value with the fewest sig figs.
$23.123 \times 1.34=30.98482$ (from calculator)
Must determine how much you need to round based on the initial values
Round to 3 sig figs $\rightarrow 31.0$

All future calculations should reflect correct significant figures.

Remember - precision of measurements are dependent on the instrument being used.

